AMD Archive

AMD Q4: 16-core Ryzen 9 3950X, Threadripper up to 32-Core 3970X

AMD is set to close out the year on a high note. As promised, the company will be delivering its latest 16-core Ryzen 9 3950X processor, built with two 7nm TSMC chiplets, to the consumer platform for $749. Not only this, but AMD today has lifted the covers on its next generation Threadripper platform, which includes Zen 2-based chiplets, a new socket, and an astounding 4x increase in CPU-to-chipset bandwidth. At this point it’s starting to feel like kicking Intel when they’re down.

AMD Rome second generation EPYC review: 2x 64-core benchmarked

So has AMD done the unthinkable? Beaten Intel by such a large margin that there is no contest? For now, based on our preliminary testing, that is the case. The launch of AMD’s second generation EPYC processors is nothing short of historic, beating the competition by a large margin in almost every metric: performance, performance per watt and performance per dollar. Analysts in the industry have stated that AMD expects to double their share in the server market by Q2 2020, and there is every reason to believe that AMD will succeed. The AMD EPYC is an extremely attractive server platform with an unbeatable performance per dollar ratio. This is one stunning processor family.

The AMD Radeon RX 5700 XT and RX 5700 review

So how does AMD’s first example of RDNA stack up? For AMD and for consumers it’s much needed progress. To be sure, the Radeon RX 5700 series cards are not going to be Turing killers. But they are competitive in price, performance, and power consumption – the all-important trifecta that AMD has trailed NVIDIA at for too many years now. AMD’s new graphics cards have already managed to do what has been sorely needed for a long time now: they’ve forced NVIDIA to lower prices and release new cards sooner than they otherwise would’ve. This is why competition is so important.

The AMD 3rd gen Ryzen deep dive review: 3700X and 3900X raising the bar

In the majority of controlled tests, AMD has done something they haven’t been able to achieve in almost 15 years, since the tail-end of the Athlon 64’s reign in 2005: that is to have a CPU microarchitecture with higher performance per clock than Intel’s leading architecture. Zen 2 finally achieves this symbolic mark by a hair’s margin, with the new core improving IPC by 10-13% when compared to Zen+. Having said that, Intel still very much holds the single-threaded performance crown by a few percent. Intel’s higher achieved frequencies as well as continued larger lead in memory sensitive workloads are still goals that AMD has to work towards, and future Zen iterations will have to further improve in order to have a shot at the ST performance crown. Beyond this, it’s remarkable that AMD has been able to achieve all of this while consuming significantly less power than Intel’s best desktop chip, all thanks to the new process node. AMD’s brand new Zen 2 processors are nothing short of a slam dunk, and the desktop processor market hasn’t been this exciting and competitive in 15 years. I’m contemplating building a small light-load workstation for my new office, and there’s no way it won’t be team red, since AMD offers the amazing value across the board – low end, mid range, and high end.

AMD Zen 2 microarchitecture analysis: Ryzen 3000 and EPYC Rome

We have been teased with AMD’s next generation processor products for over a year. The new chiplet design has been heralded as a significant breakthrough in driving performance and scalability, especially as it becomes increasingly difficult to create large silicon with high frequencies on smaller and smaller process nodes. AMD is expected to deploy its chiplet paradigm across its processor line, through Ryzen and EPYC, with those chiplets each having eight next-generation Zen 2 cores. Today AMD went into more detail about the Zen 2 core, providing justification for the +15% clock-for-clock performance increase over the previous generation that the company presented at Computex last week. The 16c/32t Ryzen 9 3950X looks quite attainable at $750 – a price that is surely to come down after launch.

AMD teases first Navi GPU products: RX 5700 Series launches in July

More AMD news – this time on the graphics front, where the company is still catching up to NVIDIA. While the bulk of this morning’s AMD Computex keynote has been on AMD’s 3rd generation Ryzen CPUs and their underlying Zen 2 architecture, the company also took a moment to briefly touch upon its highly anticipated Navi GPU architecture and associated family of products. AMD didn’t go too deep here, but they have given us just enough to be tantalized ahead of a full reveal in the not too distant future. The first Navi cards will be the Radeon RX 5700 series, which are launching in July and on an architectural level will offer 25% better performance per clock per core and 50% better power efficiency than AMD’s current-generation Vega architecture. The products will also be AMD’s first video cards using faster GDDR6 memory. Meanwhile AMD isn’t offering much in the way of concrete details on performance, but they are showing it off versus NVIDIA’s GeForce RTX 2070 in the AMD-favorable game Strange Brigade. Not that many details just yet, so it’s safe to assume AMD is not yet ready to truly take on NVIDIA. That being said – like with Zen and Ryzen, give AMD a few generations, and NVIDIA might finally be facing real competition.

AMD Ryzen 3000 announced: five CPUs, 12 cores for $499, up to 4.6 GHz, PCIe 4.0

Today at Computex, AMD CEO Dr. Lisa Su is announcing the raft of processors it will be launching on its new Zen 2 chiplet-based microarchitecture. Among other things, AMD is unveiling its new Ryzen 9 product tier, which it is using for its 12-core Ryzen 9 3900X processor, and which runs at 4.6 GHz boost. All of the five processors will be PCIe 4.0 enabled, and while they are being accompanied by the new X570 chipset launch, they still use the same AM4 socket, meaning some AMD 300 and 400-series motherboards can still be used. We have all the details inside. If the first few waves of Zen-based processors put AMD back on the map, this is the wave that will propel the company beyond Intel on all fronts – single-core performance, multicore performance, price, and on all fronts, from workstations to gaming. Intel will probably be trailing AMD on all these fronts until at least 2022. AMD’s turnaround over the past few years is nothing short of stunning, and I’m quite sure my next machine will be rocking team red once again.

AMD reveals Radeon VII: high-end 7nm Vega video card

Speaking of AMD, the company is on a roll as it also announced a new high-end consumer graphics card, which it says can take on Nvidia’s RTX 2080 graphics card. As it turns out, the video card wars are going to charge into 2019 quite a bit hotter than any of us were expecting. Moments ago, as part of AMD’s CES 2019 keynote, CEO Dr. Lisa Su announced that AMD will be releasing a new high-end, high-performance Radeon graphics card. Dubbed the Radeon VII (Seven), AMD has their eyes set on countering NVIDIA’s previously untouchable GeForce RTX 2080. And, if the card lives up to AMD’s expectations, then come February 7th it may just as well do that. At a high level then, the Radeon VII employs a slightly cut down version of AMD’s Vega 20 GPU. With 60 of 64 CUs enabled, it actually has a few less CUs than AMD’s previous flagship, the Radeon RX Vega 64, but it makes up for the loss with much higher clockspeeds and a much more powerful memory and pixel throughput backend. As a result, AMD says that the Radeon VII should beat their former flagship by anywhere between 20% and 42% depending on the game (with an overall average of 29%), which on paper would be just enough to put the card in spitting distance of NVIDIA’s RTX 2080, and making it a viable and competitive 4K gaming card. AMD has managed to shake up the processor market with their Zen architectures, and it’s high time the same happens to the video card market. Nvidia has basically had this market all to itself for several years now, so hopefully this new Radeon card can shake things up a bit and hold us over until 2020, when Intel will be entering the dedicated graphics card market as well.

AMD Ryzen 3rd gen ‘Matisse’ coming mid 2019

During AMD’s CES keynote, the company unveiled some of the details of its upcoming 3rd generation Ryzen processors, which are built on top of the Zen 2 architecture. We don’t have any independent benchmarks quite yet, of course, but the power figures comparing a Ryzen 3 processor to an Intel 9900K are nothing to sneeze at (note that these figures are coming from AMD, so get out your salt). Also, in that same test, it showed the system level power. This includes the motherboard, DRAM, SSD, and so on. As the systems were supposedly identical, this makes the comparison CPU only. The Intel system, during Cinebench, ran at 180W. This result is in line with what we’ve seen on our systems, and sounds correct. The AMD system on the other hand was running at 130-132W. If we take a look at our average system idle power in our own reviews which is around 55W, this would make the Intel CPU around 125W, whereas the AMD CPU would be around 75W. Even assuming these figures are idealised, that’s still a pretty startling difference.

AMD announces its new mobile Ryzen processors

This year at CES, we have a series of announcements from AMD before the company’s keynote presentation. Addressing the company’s mobile offerings, AMD is launching the first parts of the Ryzen 3000-series of processors, focused around the Ryzen Mobile 2nd Gen family for both the general 15W market as well as the high-performance 35W market. On top of this, AMD is also making an announcement regarding how it will address graphics drivers for these platforms, and then some icing on the cake comes from AMD’s venture into Chromebooks. AMD continues its hot streak, and now we even have several new inexpensive Chromebooks running on AMD hardware, a market segment the company wasn’t active in. The future is looking bright for AMD.

AMD outlines its future: 7nm Zen 2, Zen 3, Zen 4

On the CPU side of things, AMD talked extensively about the forthcoming Zen 2 architecture. The goal of the original Zen architecture was to get AMD, at the very least, competitive with what Intel had to offer. AMD knew that Zen would not take the performance lead from Intel, but the pricing and features of its chips made them nonetheless attractive, especially in workloads that highlighted certain shortcomings of Intel's parts (fewer memory channels, less I/O bandwidth). Zen 2 promises to be not merely competitive with Intel, but superior to it.

Key to this is TSMC's 7nm process, which offers twice the transistor density of the 14nm process the original Zen parts used. For the same performance level, power is reduced by about 50 percent, or, conversely, at the same power consumption, performance is increased by about 25 percent. TSMC's 14nm and 12nm processes both trail behind Intel's 14nm process in terms of performance per watt, but with 7nm, TSMC will take the lead.

These Zen 2 processors using the 7nm process will hit the market in 2019, so it seems like next year is the perfect moment to make any transitions from Intel to AMD. Intel has been milking its 14nm process for all its worth, because it just can't seem to get its 10nm process to work properly. With AMD moving to 7nm, it definitely seems the company will actually leapfrog Intel next year.

The AMD Threadripper 32-core and 16-core review

If you live by the workstation, you die by the performance. When it comes to processing data, throughput is key: the more a user can do, the more projects are accomplished, and the more contracts can be completed. This means that workstation users are often compute bound, and like to throw resources at the problem, be it cores, memory, storage, or graphics acceleration. AMD’s latest foray into the mix is its second generation Threadripper product, also known as Threadripper 2, which breaks the old limit on cores and pricing: the 2990WX gives 32 cores and 64 threads for only $1799. There is also the 2950X, with 16 cores and 32 threads, for a new low of $899. We tested them both.

Do I need a Threadripper machine for my job? Nope. Do I want a Threadripper machine for my job? Hell yes. The AnandTech review of the Threadripper 2 line is in, so sit back and enjoy the pretty numbers.

The AMD Threadripper 2 teaser: up to 32 cores, 64 threads

The biggest news to come out of Computex, AMD's second generation of its Ryzen Threadripper platform, is almost here. Today's announcement is all amount images, speeds and feeds, specifications, and an 'unboxing' announcement, leading to pre-orders a week before retail. As much as it pains me that there is an unboxing embargo and pre-orders before we even know how the new chips will perform, here we are. Today we get to go through the on-box specifications, discuss the design, and show what AMD included in our press kit.

Detailed first look at the new Threadripper processors - including pricing.

China begins production of x86 processors based on AMD’s IP

Chinese-designed "Dhyana" x86 processors based on AMD's Zen microarchitecture are beginning to surface from Chinese chip producer Hygon. The processors come as the fruit of AMD's x86 IP licensing agreements with its China-based partners and break the decades-long stranglehold on x86 held by the triumvirate of Intel, AMD and VIA Technologies. Details are also emerging that outline how AMD has managed to stay within the boundaries of the x86 licensing agreements but still allow Chinese-controlled interests to design and sell processors based on the Zen design.

Even though I doubt this will have any meaningful impact on competition, it's always good to see new x86 manufacturers. The licensing situation around x86 always feels impenetrable and mysterious to me, almost as if it was specifically designed and set up to divide up the x86 market, a huge cash cow for several decades now. With ARM use being on the rise and the architecture even making its first inroads into laptops, servers, and maybe even desktops, the x86 cash cow is starting to look mightily starved.

AMD reveals Threadripper 2: up to 32 cores

At the AMD press event at Computex, it was revealed that these new processors would have up to 32 cores in total, mirroring the 32-core versions of EPYC. On EPYC, those processors have four active dies, with eight active cores on each die (four for each CCX). On EPYC however, there are eight memory channels, and AMD's X399 platform only has support for four channels. For the first generation this meant that each of the two active die would have two memory channels attached - in the second generation Threadripper this is still the case: the two now 'active' parts of the chip do not have direct memory access.

I feel like the battle for the highest core count at the lowest possible price while still maintaining individual core clock is really the new focus for Intel and AMD. My only hope is that this will spur better and easier parallelisation in software so that we can all benefit from this battle.

AMD launches GPU-equipped Ryzen Pros

The first Ryzen Pros had a major omission, however: they didn't include integrated GPUs. Corporate desktops and laptops, typically used for Office, Web browsing, and other low-intensity tasks, overwhelmingly use integrated GPUs rather than discrete ones; they simply don't need anything more powerful. The need for separate GPUs meant that the first-generation Ryzen Pros had only very limited appeal in their target corporate market.

The new processors, however, follow in the footsteps of the Ryzens with integrated Vega graphics launched in February, pairing a single core complex (CCX; a bundle of four cores/eight threads and a shared level 3 cache) with a Vega GPU. This makes them a complete solution for the corporate desktop.

These Ryzen processors with built-in Vega graphics are great for relatively affordable computer builds designed for simple office work, such as my translation work. Right now, I work and play games on the same machine, but I intend to move work to a separate, lighter computer so I can be a bit more aggressive in updating the hardware in my gaming PC. Ryzen processors with built-in Vega graphics are great for this.

The AMD 2nd generation Ryzen deep dive

The headline results for the new processors are that they offer more performance than AMD’s first generation of Ryzen, use the same socket, are offered at similar prices, are competitive with the competition, and come bundled with some nice coolers. While the new Ryzen 2000-series processors are not enough to cause anyone that has already invested in Ryzen 1000-series to upgrade, AMD is offering a very attractive proposition to anyone two-to-three generations (or more) behind to upgrade into a high performance system.

AMD's strong run in processors continues.

AMD Ryzen 2nd gen details

Today marks the initial start of AMD's pre-sale of 2nd Generation Ryzen processors. The full launch is set for April 19th, which is when reviews and performance numbers will be officially available, but today we are able to tell you a bit about the processors that are coming, as well as some pictures, and link readers to where they can pre-order. We're not overly fond of manufacturers offering pre-orders before revealing performance numbers, as with the Threadripper launch last year, however we can at least discuss the details of each part.

Good to see AMD continue improving Ryzen.

Security researchers publish Ryzen flaws

Through the advent of Meltdown and Spectre, there is a heightened element of nervousness around potential security flaws in modern high-performance processors, especially those that deal with the core and critical components of company business and international infrastructure. Today, CTS-Labs, a security company based in Israel, has published a whitepaper identifying four classes of potential vulnerabilities of the Ryzen, EPYC, Ryzen Pro, and Ryzen Mobile processor lines. AMD is in the process of responding to the claims, but was only given 24 hours of notice rather than the typical 90 days for standard vulnerability disclosure. No official reason was given for the shortened time.

Nothing in technology is safe. As always, my advice is to treat any data on a phone or computer as potentially compromisable.